

MobiNova®-M1

微生物单细胞测序建库系统

用户手册

自主创新 匠心之作

墨卓生物科技(浙江)有限公司www.mobidrop.com

目录、

1.	简介	· · · · · · · · · · · · · · · · · · ·		4
	1.1	目的 …		4
	1.2	MobiM	icrobe® 试剂盒组分 ····································	4
	1.3	推荐的	设备、试剂及耗材	5
2.	注意	事项		6
3.	仪器	开机 ·		7
4.	液滴	制备		5
	4.1	裂解 ·		11
		4.1.1	注射器准备	11
		4.1.2	试剂准备	11
		4.1.3	细菌准备	11
		4.1.4	试剂及菌液转移	12
		4.1.5	平台组装	12
		4.1.6	裂解液滴制备	13
		4.1.7	液滴收集及裂解	14
	4.2	全基因]组扩增	15
		4.2.1	注射器准备	15
		4.2.2	试剂准备	15
		4.2.3	试剂转移	16
		4.2.4	裂解液滴转移	16
		4.2.5	平台组装	16
		4.2.6	MDA 液滴制备	16
		4.2.7	MDA 液滴更换 ····································	17
		4.2.8	MDA 液滴换油及扩增 ····································	18
		4.2.9	MDA 液滴观察	18
	4.3	片段化	· 液滴制备 · · · · · · · · · · · · · · · · · · ·	18
		4.3.1	注射器准备	18
		4.3.2	试剂准备	19

目录

		4.3.3 试剂转移	19
		4.3.4 MDA 液滴转移 ····································	19
		4.3.5 平台组装	19
		4.3.6 液滴打断	20
	4.4	PCR 液滴制备	21
		4.4.1 注射器准备	21
		4.4.2 试剂准备	21
		4.4.3 试剂转移	22
		4.4.4 液滴转移	22
		4.4.5 微球清洗	22
		4.4.6 微球加样	22
		4.4.7 平台组装	23
		4.4.8 PCR 液滴制备 ····································	23
		4.4.9 液滴预处理	24
		4.4.10 液滴换油	24
		4.4.11 液滴分管	24
5.	文库	构建	25
	5.1	液滴回收	25
	5.2	样品转移	25
	5.3	样品回收	25
	5.4	预扩增	26
	5.5	预扩增产物纯化	27
	5.6	二次打断	27
	5.7	片段化产物接头连接	28
	5.8	连接产物纯化	29
	5.9	文库标签扩增	30
	5.10	文库片段分选	31
6.	仪器	关机	32

简介

1.1 目的

对单细胞微生物测序系统 M1 进行操作培训

1.2 MobiMicrobe® 试剂盒组分

套盒名称(大盒)	运输	组件	保存温度	规格	数量
MobiMicrobe®	冰袋	微球	4°C	1.5 mL	4
微球试剂盒		Buffer 1	4°C	2 mL	6
		1x 生成油	常温	2 mL	4
		3x 生成油	常温	2 mL	2
		3M HFE 7500	常温	2 mL	5
		矿物油	常温	2 mL	4
		0.5X 生成油	常温	2 mL	4
MobiMicrobe®	常温运输	0.75X 生成油	常温	2 mL	4
常温试剂耗材	市温色制	W 生成油	常温	2 mL	3
		OptiPrep	常温	1.5 mL	1
	-	建库分选磁珠	常温	2 mL	1
		滤芯	常温	/	4
		回收剂	常温	2 mL	1
		芯片	常温	/	8
		10×buffer Green+	-20°C	0.5 mL	1
		lysozyme	-20°C	0.5 mL	1
		PrepGem	-20°C	0.5 mL	1
		Lysostaphin	-20°C	0.5 mL	1
		Bovine Serum Albumin	-20°C	0.5 mL	1
MobiMicrobe®		10%tween-20	-20°C	0.5 mL	1
裂解、扩增、打	干冰	200X T2	-20°C	0.5 mL	1
断和标记试剂盒		MS引物	-20°C	0.5 mL	1
		10X phi29 DNA Polymerase Buffer	-20°C	0.5 mL	1
		dNTP Mixture	-20	0.5 mL	1
		phi29 DNA Polymerase	-20°C	0.5 mL	1
		5X Tagment Buffer L	-20°C	0.5 mL	1

套盒名称(大盒)	运输	组件	保存温度	规格	数量
	-	打断酶 B	-20°C	0.5 mL	1
MobiMicrobe®		打断酶 C	-20°C	0.5 mL	1
裂解、扩增、打 断和标记试剂盒	干冰	2X 预扩增混合液	-20°C	2 mL	2
四个时小人人人		10 μM PCR-reverse	-20°C	0.5 mL	1
		Evagreen	-20°C	0.5 mL	1
		1x TE 缓冲液	-20°C	1.5 mL	1
		片段化缓冲液	-20°C	0.5 mL	1
		片段化酶	-20°C	0.5 mL	1
		连接酶	-20°C	0.5 mL	1
MobiMicrobe®	于冰 接头 护增混合	连接缓冲液	-20°C	1.5 mL	1
建库试剂盒		接头	-20°C	0.5 mL	1
		扩增混合液	-20°C	0.5 mL	1
		扩增引物 1	-20°C	0.5 mL	1
		10X FBI buffer	-20°C	0.5 mL	1
		2X 预扩增混合液	-20°C	1.5 mL	1
		Ms-PCR-P5-Full	-20°C	0.5 mL	1
MobiMicrobe®	T>L	N70X*8	-20°C	0.5 mL	8
Index	干冰	扩增引物 2*8	-20°C	0.5 mL	8

1.3 MobiMicrobe® 推荐的设备、试剂及耗材

序号	设备	品牌	货号
1	MiniSpin plus 台式高速离心机	艾本德	5453000097
		Pipet-Lite LTS Pipette L-200XLS+	17014391
2	移液枪枪头	Pipet-Lite LTS Pipette L-1000XLS+	17014382
		Pipet-Lite LTS Pipette L-20 XLS+	17014392
3	涡旋振荡器	VWR	30389240

序号	耗材	品	牌	货号
1	1.5 mL 低吸附离心管		ARSTEDT	72.706.700
2	200μL PCR 管		ARSTEDT	72.737.002
	移液器枪头	Tips LTS 200µ	ıL Filter RT-L200FLR	30389241
3		Tips LTS 1ML F	Filter RT-L1000FLR	30389213
		Tips LTS 20μL	Filter RT-L20FLR	30389226

2 注意事项

- 实验操作避开空调出风口;
- 仪置尽量避免震动;
- 试剂配制、加样、液滴转移等操作处理于生物安全柜内进行;
- 细菌提取时处于超净工作台中工作,工作前后需紫外消毒 30 min,避免污染;
- 仪器运行及液滴转移于实验室内进行,实验室温度保持 18°C -24°C;
- 移液器遵循制造商的校准和维护计划,定期校准及维护。

3 仪器开机

- **3.1** 向上打开仪器背部开关,背部开关为仪器总开关 (图 1)。
- 3.2 轻轻向内推主控制开关处,主控制开关面板自动弹出,手扶面板,用力向后,使面板全部打开(图 2-b);

依次打开电脑主机、显示器、风扇、HUB、前门控制开关,可根据实验环境及实验步骤选择性打开白灯、黄灯、信号发生器/功率放大器开关,"⑧"为备用控制开关,一般不使用(图 2-c)。

图 1: 总开关位置

图 2: 主控制开关示意图

3.3 向内推控制开关,控制开关面板自动弹出,手扶面板,用力向下,使面板全部打开;

依次打开制冷模块、高速相机/显微镜、显微镜载物台、并根据实验需求打 开注射泵 1-5 开关及液滴预处理器开关(图 3)。

图 3:控制开关内部示意图

用力向外拉仪器外部面板把手,露出显微镜,打开显微镜开关,显微镜开 3.4 关位于显微镜右侧(图 4),请勿打开显微镜前端"ECO"模式。

图 4: 显微镜开关示意图

- 向内推键盘托,键盘托面板自动弹出,手拖面板向外拉,使面板全部打开, 3.5 向内推键盘托右侧位置,鼠标托自动弹出。
- 打开图示软件,输入账号: admin,密码: password!,点击登录。仪 3.6 器发出"嘀"的一声表示相机已就位,进入软件后,双击连接需要使用 的相机(图 5)。

图 5: 软件图标及相机名示意图

- 向上拉仪器右边卷帘门,使注射泵露出,注射泵从左到右依次为注射泵1、 3.7 注射泵 2、注射泵 3、注射泵 4、注射泵 5。
- 在控制面板上选择注射器型号,通常注射器型号为 8.66 mm 或 8.76 3.8 mm, 自定义状态下可直接填写注射泵内径(图 6)。

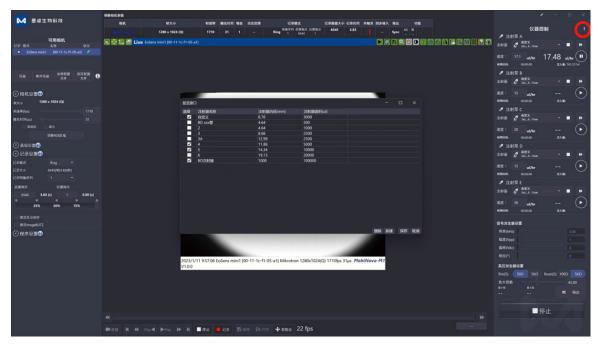


图 6: 软件注射泵型号选择示意图

3.9 将向右推芯片,使芯片固定在显微镜载物台上,通过控制面板下方的载物台按钮或键盘的"W、A、S、D"按钮调整显微镜视野及焦距使芯片流道在视野中间(图 7)。

图 7: 芯片摆放位置示意图

~ 液滴制备

4.1 裂解

4.1.1 注射器准备

- **α.** 准备 3 个注射器,其中两个分别加入 500 μL HFE,分别做好标记,一个标记为细菌,另一个标记为试剂;
- **b.** 另一个注射器中加入 1.5 mL 1X 生成油,注射器标记为"1X 生成油", 并连接好针头及 PE/2 tubing。

4.1.2 试剂准备

按下表准备裂解试剂,试剂配制完成后可放置于 4℃短暂保存;

试剂名称	1x 体积 (μL)	1.3x 体积 (μL)
10×buffer Green+	30	40
lysozyme	3	4
PrepGem	3	4
溶菌素	3	4
Bovine Serum Albumin	6	8
10%tween 20	3	4
200X T2	1.5	2
MS 引物	3	4
NF-H ₂ O	187.5	250

4.1.3 细菌准备

- **α.** 从 -80°C取出细菌,自然解冻,13400 rpm 离心 1min,弃上清 900 μL,加入 900 μL PBS,混匀后 13400 rpm 离心 1min,清洗,共清洗 3 次,最后一次剩 100 μL 菌液;
- **b.** 加入适量 PBS, 使细菌终浓度为 60*10^6 个/mL;
- **c.** 取 85 μL 菌液,加入 15 μL OptiPrep,用枪头混匀;

4.1.4 试剂及菌液转移

a. 将配好的试剂转移至标记为"试剂"的注射器中,转移时注意用移液器 慢慢从注射器管口处转移,转移时可一边往下拉注射器活塞,一边向下打 移液器(图 8);

图 8: 试剂转移图

- b. 将配好的菌液转移至标记为"菌液"的注射器中,转移时注意用移液器 慢慢从注射器管口处转移(与试剂转移方式相同),转移时可一边往下拉 注射器活塞,一边向下打移液器;
- c. 将两个加好菌液及试剂的注射器连接好针头及 PE/2 tubing,并垂直 摆放,摆放时针头朝上。

4.1.5 平台组装

a. 向右旋转注射器固定按钮,解锁注射泵卡扣(图 9-1),调整拉注射泵 活动位置,将注射器装在注射泵上,注射器活塞柄置于"中间夹板"下,

图 9-1:解锁注射泵卡扣

注射器按手位置置于"V型夹板"上,向左拨注射泵卡扣,完成上锁,向左旋转注射泵固定按钮,旋紧注射泵"V型夹板"及"中间夹板"螺帽,完成注射器安装(图 9-2);

图 9-2: 解锁注射泵卡扣注射器安装示意图

- **b.** 标记为"1x 生成油"的注射器装在注射泵 3,标记为"试剂"的注射器装在注射泵 4,标记为"细菌"的注射器装在注射泵 2;
- c. 调整显微镜光源,显微镜光线颜色为白色光(图 10)。

图 10: 光源调节示意图

4.1.6 裂解液滴制备

- a. 打开注射泵控制软件,点击快进键快进注射泵 3 (或使用键盘"向右"功 能键), 使 1X 生成油进入 PE/2 tubing 中, 但不要溢出, 然后调整流速为 5000 μL/h 使注射器内液体缓缓流出;
- b. 将注射泵 4 流速调整为 5000 μL/h 使注射器内液体缓缓流出,也可使 用注射泵快进键快进;
- c. 将注射泵 2 流速调整为 5000 μL/h 使注射器内液体缓缓流出,注意不 要使用注射泵快进键快进;
- d. 将 tubing 插入芯片对应位置,1X 生成油插入油相口,试剂插入试剂口, 细菌插入细菌口,收集口插入收集管,收集管长度约 0.1 m (图 11);

图 11: 裂解芯片各插口位置示意图

e. 调整注射泵流速,注射泵 2 流速调整为 60 μL/h,注射泵 3 流速调整为 600 μL/h,注射泵 4 流速调整为 240 μL/h,启动注射泵,待注射泵液体 缓缓流出,形成液滴(图 12)。

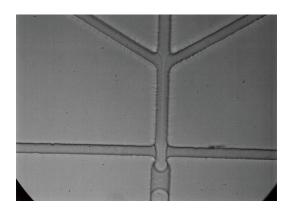


图 12: 裂解液滴生成示意图

4.1.7 液滴收集及裂解

- a. 待液滴形成后, 用 200 µL 离心管收集液滴, 收集 2 min 后用细胞计数 板测量液滴直径是否为 26-28 µm, 若液滴直径偏小, 则调大油相速度; 若液滴直径太大,则调小油相速度。
- b. 待液滴直径合适后,使用已加入80 µL 矿物油的离心管来收集液滴,每 管液滴 15 min (图 13);

图 13:液滴收集示意图

- c. 收集好的液滴至少静置 5 min 后,用 20 µL 移液器弃去下层生成油,弃 油时注意枪头需要插到最底部;
- **d.** 在弃油后的液滴中,加入 100 μL 3x 生成油,静置 5 min;
- e. 静置结束后, 弃下层 3X 生成油;
- f. 弃油后的液滴, 在 PCR 仪上进行裂解, 裂解程序为 37°C 30 min, 75°C 10 min, 95°C 5 min, 4°C 保存。

液滴在 4°C能保存一周

4.2 全基因组扩增

4.2.1 注射器准备

- α. 准备 5 个注射器, 其中两个分别加入 500 μL HFE, 分别做好标记, 一 个标记为 25% 试剂,另一个 100% 试剂;
- **b.** 第三个注射器中加入 1.5 mL 0.75x 生成油,注射器标记为"0.75x 生 成油",并连接好针头及 PE/2 tubing;

- c. 第四个注射器中加入 1.5 mL 0.5x 生成油,注射器标记为"0.5x 生成油", 并连接好针头及 PE/2 tubing;
- d. 第五个注射器中加入 300 μL 1x 生成油,标记为液滴;

按下表准备 MDA 试剂,配制完成后放于 4°C保存

试剂名称	25% 体系 (μL)	100% 体系 (μL)
10X phi29 DNA Polymerase Buffer	16	16
MS引物	1.25	7.25
2.5mM dNTPs	2	8
phi29 DNA Polymerase	8	8
Bovine Serum Albumin	2	2
10%tween-20	1	1
200X T2	0.5	0.5
NF-H ₂ O	78.5	64.5
Evagreen	0	8

4.2.3 试剂转移

将配好的 100% 试剂转移至标记为"试剂"的注射器中,转移时注意用移 液器慢慢从注射器管口处转移,转移时可一边往下拉注射器活塞,一边向 下打移液器。

4.2.4 裂解液滴转移

- a. 将裂解好的液滴用 Rainin 20 uL 移液枪转移至标记为"液滴"的注射 器中,转移时注意先将注射器拉到 500 µL 刻度线处,移液枪刻度调整为 17 μL, 吸取液滴时需要将枪头插入至离心管最底部;
- **b.** 将加好液滴及试剂的注射器连接好针头及 PE/2 tubing,并垂直摆放, 摆放时针头朝上。

4.2.5 平台组装

- a. 注射器安装方式同 4.1.5 a;
- b. 标记为"0.5 x 生成油"的注射器装在注射泵 1 上, 标记为"液滴"的注射

器装在注射泵 2 上,标记为"0.75 x 生成油"的注射器装在注射泵 3 上, 标记为"100% 试剂"的注射器装在注射泵 4 上;

c. 调整显微镜光源,显微镜光线颜色为白色光。

4.2.6 MDA 液滴制备

- a. 打开注射泵控制软件,点击快进注射泵 1、3 快进键,使注射器中液滴流 入 tubing 中, 但不要溢出, 然后调整流速为 5000 μL/h 使注射器内液体 缓缓流出;
- b. 将注射泵 2 流速调整为 800 μL/h 使注射器内液体缓缓流出,但不要 溢出 tubing;
- c. 将注射泵 4 流速调整为 5000 µL/h 使注射器内液体缓缓流出,但不要 溢出 tubing;
- d. 将 tubing 插入芯片对应位置, 0.75x 生成油插入油相口 1,100% 试剂 插入试剂口, 0.5x 生成油插入油相口 2, 液滴插入液滴口, 收集口插入 收集管,收集管长度约 0.1 m (图 14);

图 14: MDA 芯片各插口位置示意图

- e. 调整注射泵流速,注射泵 1 流速调整为 150 μL/h,注射泵 2 流速调整 为 60 μL/h, 注射泵 3 流速调整为 100 μL/h, 注射泵 4 流速调整为 75 μL/h, 启动注射泵, 待注射泵液体缓缓流出, 形成液滴;
- f. 待液滴完全流出后,可微调注射泵 1、3,使液滴 1:1 配对;
- g. 调整信号发生器,频率设置为 10 KHz,幅度为 8Vpp;
- h. 调整高压发生器, 放大倍数为 76;

- i. 将视野调整至电极处, 观察液滴是否融合, 若液滴不融合, 则调大高压发 生器放大倍数;
- j. 待液滴融合后, 用加入 80 μL 矿物油的 200 μL 离心管收集液滴, 收集 时间为 15 min。

4.2.7 MDA 液滴更换

- a. 直接按软件底部停止键停止所有设备;
- b. 将配制好的 25% 体系试剂转移至标记为"25% 试剂"的注射器中,转 移方法同 100% 体系试剂;
- **c.** 取下注射泵 2 上的 100% 试剂,将试剂注射器更换为 25% 体系试剂的 注射泵;
- d. 将注射泵 2 流速调整为 5000 μL/h 使注射器内液体缓缓流出,但不要 溢出 tubing;
- e. 将 25% 试剂插入试剂口,更换收集口 tubing;
- f. 调整显微镜视野, 使芯片位置处于在视野中心;
- g. 调整注射泵 2 流速为 75 μL/h, 打开注射泵 1、2、3、4 及信号发生器与 高压发生器;
- h. 待液滴流出后, 微调油相与电压, 使液滴 1:1 配对并达到融合效果;
- i. 待液滴融合后用用加入 80 μL 矿物油的 200 μL 离心管收集液滴, 收集 时间为30 min/管,至少收集2管。

4.2.8 MDA 液滴换油及扩增

- α. 收集好的液滴静置 5 min 后, 用 20 μL 移液器弃去下层生成油, 弃油 时注意枪头需要插到最底部;
- **b.** 在弃油后的液滴中,加入 100 μL 3x 生成油,静置 5 min;
- c. 静置结束后, 弃下层 3X 生成油;
- **d.** 弃油后的液滴, 在 PCR 仪上进行 MDA 扩增, 扩增程序为 30 °C 8 h, 65 °C 10 min, 4 °C 保存。

液滴在 4℃能保存一周

4.2.9 MDA 液滴观察

取 10 µL 100% 体系试剂生产的液滴,加入细胞计数板,用荧光显微镜观 察亮的液滴占比,并进行计算,若占比 <1% 建议重新实验;

计算亮度占比时至少选取3个视野。

4.3 片段化液滴制备

4.3.1 注射器准备

- α. 准备 4 个注射器,第一个注射器加入 500 μL HFE,标记为片段化试剂;
- **b.** 第 2/3 个注射器中分别加入 1.5 mL W 生成油,注射器分别标记为"W 生成油 1"和"W 生成油 2",并连接好针头及 PE/2 tubing;
- **c.** 第 4 个注射器中加入 300 µL 1X 生成油, 标记为液滴。

4.3.2 试剂准备

按下表准备片段化试剂,配制完成后放于4℃保存

试剂名称	体积 (μL)
5X Tagment Buffer L	24
打断酶 B	30
打断酶 C	30
Bovine Serum Albumin	1.8
10% tween-20	1.8
NF-H ₂ O	2.4

4.3.3 试剂转移

将配好的片段化试剂转移至标记为"片段化试剂"的注射器中,转移时 注意用移液器慢慢从注射器管口处转移,转移时可一边往下拉注射器 活塞,一边向下打移液器。

4.3.4 MDA 液滴转移

α. 将 MDA 扩增后的液滴用 Rainin 20 μL 移液枪转移至标记为"液滴"的

注射器中,转移时注意先将注射器拉到 500 μL 刻度线处,移液枪刻度调 整为 17 μL, 吸取液滴时需要将枪头插入至离心管最底部;

b. 将加好液滴及试剂的注射器连接好针头及 PE/2 tubing,并垂直摆放, 摆放时针头朝上。

4.3.5 平台组装

- **a.** 注射器安装方式同 4.1.5 a;
- **b.** 标记为"W 生成油 1"的注射器装在注射泵 1 上, 标记为"液滴"的注射 器装在注射泵 2 上,标记为"W 生成油 2"的注射器装在注射泵 3 上,标记 为"片段化试剂"的注射器装在注射泵 4 上;
- c. 调整显微镜光源,显微镜光线颜色为白色光。

4.3.6 液滴打断

- **a.** 打开注射泵控制软件,点击快进注射泵 1、3 快进键,使 W 生成油流入 tubing 中,但不要溢出,然后调整流速为 5000 μL/h 使注射器内液体缓 缓流出;
- b. 将注射泵 2 流速调整为 800 μL/h 使注射器内液体缓缓流出,但不要 溢出 tubing;
- c. 将注射泵 4 流速调整为 5000 µL/h 使注射器内液体缓缓流出,但不要 溢出 tubing;
- d. 将 tubing 插入芯片对应位置, W 生成油 1 插入油相口 1, 片段化试 剂插入试剂口,W 生成油 2 插入油相口 2,液滴插入液滴口,收集口插 入收集管,收集管长度约 0.1 m(图 15);

图 15: 片段化芯片各插口位置示意图

- e. 调整注射泵流速,注射泵 1 流速调整为 100 μL/h,注射泵 2 流速调整 为 25 μL/h, 注射泵 3 流速调整为 100 μL/h, 启动注射泵, 注射泵 4 流速 调整为 75 μL/h, 待注射泵液体缓缓流出, 形成液滴;
- f. 待液滴完全流出后,可微调注射泵 1、3,使液滴 1:1 配对;
- **q.** 调整信号发生器,频率设置为 5 KHz,幅度为 5Vpp;
- h. 调整高压发生器, 放大倍数为 60;
- i. 将视野调整至电极处,观察液滴是否融合,若液滴不融合,则调大高压发 生器放大倍数;
- i. 待液滴融合后, 用加入 80 μL 矿物油的 200 μL 离心管收集液滴, 收集 时间为 30 min, 至少收集两管;
- \mathbf{k} . 收集好的液滴静置 5 min 后, 用 20 μ L 移液器弃去下层生成油, 弃油 时注意枪头需要插到最底部;
- I. 将液滴制于 PCR 仪上,55°C,10min 进行打断,4°C保存,4°C可保存一周。

4.4 PCR 液滴制备

4.4.1 注射器准备

- **α.** 准备 5 个注射器,第 1 个注射器加入 500 μL HFE,标记为"PCR 试剂";
- **b.** 第 2 个注射器中分别加入 1.5 mL 0.5x 生成油,注射器标记为"0.5x 生成油",并连接好针头及 PE/2 tubing;
- c. 第3个注射器中分别加入1.5 mL1x生成油,注射器标记为"1x生成油", 并连接好针头及 PE/2 tubing;
- **d.** 第 4 个注射器中加入 400 μL 500 μL HFE, 标记为"微球", 连接好针 头并手动推出针管内 HFE, 使 HFE 溢出针头;
- e. 第 5 个注射器中加入 300 μL 1x 生成油,注射器标记为"液滴"。

4.4.2 试剂准备

按下表准备片段化试剂,配制完成后放于4℃保存

试剂名称	体积 (μL)
2x 预扩增混合液	200
10 uM PCR-reverse	16
10% Tween 20	4
Bovine Serum Albumin	4
NF-H ₂ O	56

4.4.3 试剂转移

将配好的片段化试剂转移至标记为"PCR 试剂"的注射器中,转移时注意 用移液器慢慢从注射器管口处转移,转移时可一边往下拉注射器活塞,一 边向下打移液器。

4.4.4 液滴转移

- a. 将片段化后的液滴用 Rainin 20 µL 移液枪转移至标记为"液滴"的注 射器中,转移时注意先将注射器拉到 500 μL 刻度线处,移液枪刻度调整 为 17 μL, 吸取液滴时需要将枪头插入至离心管最底部;
- b. 将加好液滴及试剂的注射器连接好针头及 PE/2 tubing,并垂直摆放, 摆放时针头朝上。

4.4.5 微球清洗

- a. 打开房间黄光灯并关闭实验室白光灯;
- **b.** 取一新的 1.5 mL EP 管,加入 1 mL Buffer 1,从 4℃取出 150 μL 微球, 直接加入至含有 Buffer 1 的 EP 管中,震荡混匀;
- **c.** 离心机转速 5 000 g 离心 1 min, 弃上清约 700 μL 进行清洗;
- **d.** 加入 800 μL Buffer 1 再次清洗弃上清;
- **e.** 加入 800 μL Buffer 1,5000 g 离心 1 min, 弃上清, 使液体剩余约 500 μ L;
- f. 加入 500 µL 2x 预扩增混合液, 5000 g 离心 1 min, 弃去所有上清。

4.4.6 微球加样

- a. 在黄光条件下,取一长约 1 m PE/2 tubing,连接于标记为"微球"的注 射器上,一端接干针头,另一端插入洗好的微球底部;
- b. 用力拉注射器活塞,使微球吸到注射器中,吸取过程注意不要产生气泡;
- c. 待微球吸取干净后拔掉与针头连接处 tubing, 排出注射器内所有气泡 后将吸取微球端 tubing 插入针头;
- **d.** 切去多余 tubing, 剩余约 5 cm 长;

4.4.7 平台组装

- **a.** 注射器安装方式同 4.1.5 a;
- b. 标记为"0.5x 生成油"的注射器装在注射泵 1上,标记为"1x 生成油"的 注射器装在注射泵 5 上,标记为"PCR 试剂"的注射器装在注射泵 4 上, 标记为"液滴"的注射器装在注射泵 2 上,标记为"微球"的注射器装在注 射泵 3 上;
- c. 调整显微镜光源,显微镜光线颜色为红色光;
- d. 打开仪器黄光灯开关。

4.4.8 PCR 液滴制备

- **q.** 打开注射泵控制软件,点击快进注射泵 1、5 快进键,使生成油流入 tubing 中,但不要溢出,然后调整流速为 5000 μL/h 使注射器内液体缓 缓流出;
- b. 将注射泵 2 流速调整为 800 μL/h 使注射器内液滴缓缓流出,但不要 溢出 tubing;
- c. 将注射泵 3 流速调整为 200 μL/h,观察到微球流动后立刻停止注射泵;
- d. 将注射泵 4 流速调整为 5000 μL/h 使注射器内液体缓缓流出,但不要 溢出 tubing;
- **e.** 将 tubing 插入芯片对应位置, 0.5X 生成油 1 插入油相口 1, PCR 化试 剂插入试剂口,微球插入微球口,1X生成油插入油相口 2,液滴插入液滴口, 收集口插入收集管,收集管长度约 0.1 m(图 16);

图 16: PCR 芯片各插口位置示意图

- f. 调整注射泵流速,注射泵 1 流速调整为 100 μL/h,注射泵 2 流速调整为 50 $\mu L/h$,注射泵 3 流速调整为 25 $\mu L/h$,注射泵 4 流速调整为 140 $\mu L/h$,注射泵 5 流速调整为 350 μL/h,启动注射泵,待注射泵液体缓缓流出,形成液滴;
- q. 待液滴完全流出后,可微调注射泵 1、3、5,使液滴 1:1 配对;
- h. 调整信号发生器,频率设置为 10 KHz,幅度为 8Vpp;
- i. 调整高压发生器, 放大倍数为 110;
- j. 将视野调整至电极处,观察液滴是否融合,若液滴不融合,则调大高压发 生器放大倍数;
- k. 待液滴融合后, 用 1.5 mL 离心管收集液滴, 直至液滴或试剂跑完。

4.4.9 液滴预处理

- α. 用 20 μL 移液器弃去下层生成油弃去液滴底部生成油,观察液滴体积, 若液滴体积 >500 μL 则将液滴分成两管,保证每管体积 <500 μL;
- **b.** 将装有液滴的 1.5 mL EP 管, 小心地转移至液滴预处理器上, 平稳放入 孔中,合上盖子;
- c. 打开液滴预处理器电源控制,按压按钮,开启液滴预处理器(绿色闪烁 时在运行,过程中请勿开盖,耗时约 5 min);
- d. 液滴预处理器指示灯为绿色常亮时, 开盖取出 EP 管, 进行下一步操作。

4.4.10 液滴换油

- α. 向预处理完后液滴中加入 300 μL W 生成油, 静置 5 min;
- **b.** 静置结束后,弃下层 W 生成油。

4.4.11 液滴分管

- **α.** 准备 4-6 个 200 μL PCR 管;
- **b.** 用 200 μ L 移液器,调节量程至 80 μ L,缓慢吸取上层的乳浊液,沿着 0.2 mL EP 管管壁, 缓慢打入准备好的 200 μL PCR 管中;
- c. 在分好管的液滴上盖 100 μL 矿物油;
- **d.** 分管后液滴可置于 4 ℃保存 48 h 或 -80 ℃长期保存。

5 文库构建

5.1 液滴回收

- **a.** 若样品保存于 -80 °C, 提前取出样品管, 置于 4 °C解冻, 解冻后将样品快速离心 10 s, 然后去除上层矿物油(不要吸到下层液滴);
- **b.** 加入 120 μL 回收剂, 盖紧盖子, 颠倒混匀后, 快速离心 10 s。

5.2 样品转移

- **a.** 在生物安全柜中,将两管样品合并到一管中,合并时可先弃去底部回收剂,迅速离心;
- **b.** 将滤芯置于低吸附离心管内,合并后的样品于转移至滤芯内;
- c. 5000 g 离心 5 min;
- **d.** 取 50 μ L 10x FBI buffer,加入 450 μ L NF 水,稀释成 1x FBI buffer, 震荡混匀后离心;
- **e.** 取 100 μ L 1x FBI buffer 加入原装样品的 200 μ L 样品管中清洗管壁,清洗后瞬时离心;
- **f.** 将清洗后的 1x FBI buffer 转移至离心完的滤芯中,移液枪吹打滤芯 10 次(避免触碰滤芯),注意转移时需一一对应;
- g. 5000 g 离心 5 min。

5.3 样品回收

- a. 将建库分选磁珠漩涡震动充分混匀;
- b. 加入 1× 建库分选磁珠,置于漩涡振荡混匀仪上轻轻震荡混匀;
- c. 室温孵育 5 分钟;
- d. 瞬时离心,置于 1.5 mL 磁力架上 5 分钟;
- e. 弃除上清液,避免吸取到磁珠;
- **f.** 将离心管保持于磁力架上,加入 1000 μ L 新鲜配制的 80 % 乙醇,等 待 30 秒,弃除上清液;
- g. 重复上述步骤 f 一次;
- h. 打开管盖晾干样品(约 1-2 分钟),密切注意直至样品上无水渍,呈哑光;

- i. 用 20 μL 移液枪去除底部剩余 80% 乙醇;
- j. 从磁力架上取下样品管,立即加入 20 μL 超纯水,盖上盖子;
- k. 用移液枪吹打 10 次,将磁珠与水完全混匀;
- I. 置于涡旋振荡混匀仪上轻轻震荡混匀;
- m. 室温孵育 5 分钟;
- n. 瞬时离心,将离心管放回至磁力架,直至溶液变澄清(约5分钟);
- **o.** 转移 20 μL 洗脱液至新 200 μL PCR 管;
- **p.** 取 8 μL 样品留样。

5.4 预扩增

a. 按照下表生物安全柜内配制预扩增反应试剂:

试剂名称	体积 (μL)
2x 预扩增混合液	12.5 μL
Ms-PCR-P5-Full	1 μL
N70X	1 μL
合计	14.5 μL

b. 加入 14.5 μL 预扩增反应试剂于 10.5 μL 样品中用移液枪吹打 10 次 混匀;

c. 按照下述 PCR 程序进行扩增:

热盖	反应体系	运行时间
105°C	25 μL	~50 分钟
步骤	温度	时间
1	98°C	30s
2	98°C	15s
3	60°C	30s
步	骤 2-3 循环,循环数为 8	3 cycles
4	72°C	2min
5	72°C	5 分钟

5.5 预扩增产物纯化

- a. 将建库分选磁珠漩涡震动充分混匀;
- **b.** 加入建库分选磁珠,置于涡旋振荡混匀仪上轻轻震动混匀 10 下;
- c. 室温孵育 5 min;
- d. 瞬时离心, 置于 0.2 mL 磁力架上 5 分钟, 直至溶液变澄清;
- e. 弃上清,避免吸到磁珠;
- f. 将离心管保持于磁力架上,加入 200 µL 新鲜配制的 80 % 乙醇,等待 30 s;
- g. 弃上清, 重复上述步骤 f 一次;
- h. 弃上清,放置于磁力架上;
- i. 打开管盖, 晾干样品, 约 1-2 分钟, 密切注意直至样品上无水渍, 呈哑光;
- **j**. 用 20 μL 移液枪去除底部剩余 80% 乙醇;
- k. 从磁力架上取下样品管, 立即加入 22 μL 超纯水, 盖上盖子;
- I. 用移液枪吹打 10 次直至磁珠与液体完全混匀;
- m. 室温孵育 5 分钟;
- n. 瞬时离心,将离心管放回至磁力架静置 5 分钟,直至溶液变澄清;
- o. 转移 20 μL 洗脱液至新 200 μL PCR 管;
- **p.** 取 0.5 μL 样品进行 Qubit 浓度测定;
- q. 取 1 μL 样品进行行安捷伦 2100 HS DNA 质检分析。

5.6 二次打断

- a. 确保片段化酶缓冲液解冻完全, 涡旋片段化酶缓冲液和混匀片段化酶 5-8 秒,并瞬时离心,放置于冰盒上;
- **b.** 对于每个样品, 取 10 μL 于 0.2 mL PCR 管中, 补充 16 μL 1x TE 缓冲 液至总体积为 26 μL;

若 10 μL 的 cDNA 样品浓度超过 100 ng,则取 100 ng 样品,并加入 1x

TE 缓冲液至总体积为 26 μL;

c. 按下表配制片段化试剂,充分漩涡混匀;

反转录试剂	1.1x (μL)	2.2x (μL)	3.3x (μL)	4.4x (μL)
片段化缓冲液	7.7	15.4	23.1	30.8
片段化酶	2.2	4.4	6.6	8.8
合计	9.9	19.8	29.7	39.6

- d. 向每个样品中加入 9 μL 片段化试剂, 用移液枪混匀并瞬时离心;
- e. 在 PCR 仪中进行以下程序:

热盖	反应体系	运行时间
75°C	35 μΙ	~35 分钟
步骤	温度	时间
1	37°C	5 分钟
2	65 °C	30 分钟
3	8°C	∞

反应结束后,立即取出样品置于冰上,进行下一步接头连接反应。

5.7 片段化产物接头连接

a. 按照下表提前配制连接反应试剂,用移液枪充分混匀;

连接反应试剂	1.1x (μL)	2.2x (μL)	3.3x (μL)	4.4x (μL)
连接缓冲液	33	66	99	132
连接酶	1.1	2.2	3.3	4.4
合计	34.1	68.2	102.3	147.4

- **b.** 向每个样品中加入 31 μL 的连接反应试剂;
- c. 参照下表根据输入的 cDNA 量,加入 2.5 μL 指定工作浓度的接头,原 管接头浓度是 20 μM, 用 DNA elution buffer 进行稀释;

输入 cDNA 量	接头工作浓度
5-99ng	2 μΜ
1-5ng	0.4 μΜ
<1ng	0.2 μΜ

- d. 用移液枪吹打 15 次混匀, 瞬时离心;
- e.PCR 仪 20°C孵育 15 分钟,体积设置 69 μL,热盖设置 30°C。

5.8 连接产物纯化

a. 按照下表将建库试剂盒内 1x TE 缓冲液稀释至 0.1x TE 缓冲液:

TE 缓冲液试剂	体积(μL)
NF-H2O	90
1x TE 缓冲液	10
总计	100

- **b.** 将建库分选磁珠用移液枪充分混匀;
- c. 向每个样品加入 34.25 µL 建库分选磁珠;
- d. 用手指拿起样品管置于漩涡振荡混匀仪上, 轻轻震动混匀 10 下;
- e. 室温孵育 5 分钟;
- f. 瞬时离心, 置于磁力架上 5 分钟, 直至溶液变澄清;
- g. 弃上清液(避免吸到磁珠);
- h. 将离心管保持于磁力架上,加入 200 µL 当天配置的 80 % 乙醇,等待 30秒;
- i. 弃上清液, 重复上述 h 步骤一次;
- i. 打开管盖, 晾干样品, 约 3 分钟, 要密切注意直至样品上无水渍, 呈哑光;
- k. 立即从磁力架取下样品,向每个样品中加入 22 µL 0.1x TE buffer;
- I. 盖上盖子, 用移液枪吹打 15 次直至磁珠完全混匀于液体中;
- m. 室温孵育 3 分钟;

- n. 瞬时离心,将离心管放回至磁力架,直至溶液澄清;
- o. 转移洗脱液 20 μL 至新 0.2 mL PCR 管。

5.9 文库标签扩增

a. 按照下表配制文库标签扩增试剂,用移液枪充分混匀;

连接反应试剂	1.1x (μL)	2.2x (μL)	3.3x (μL)	4.4x (μL)
扩增混合液	27.5	55	82.5	110
扩增引物 1	2.75	5.5	8.25	11
合计	30.25	60.5	90.75	121

- **b** 向连接产物纯化后的 20 μL 样品中加入 27.5 μL 建库 PCR 试剂;
- **c.** 加入 2.5 μL 扩增引物 2, 吹打 15 次混匀;

记录每个样本的扩增引物 2 编号,且扩增引物 2 需与 N70X 对应。

d. 确定好样品循环数后进行 PCR 扩增,程序如下:

热盖	反应体系	运行时间
105°C	50 μL	~60 分钟
步骤	温度	时间
1	98°C	30 s
2	98°C	10 s
3	65°C	75 s
4	65°C	5 分钟
	步骤 2-3 循环,循环数参	考下表
5	8°C	∞

循环数参考如下:

输入 cDNA 量	阶段二循环数
0.25-25 ng	13-16
25-50 ng	12-13
50-100 ng	10-12

5.10 文库片段分选

- **α.** 向每个样品中加入 50 μL DNA elution buffer;
- **b.** 向每个样品中加入 50 μ L(0.5x)建库分选磁珠,漩涡震荡混匀;
- c. 室温孵育 5 min;
- d. 瞬时离心后,将样品置于磁力架上,直至溶液澄清;
- e. 转移上清至新 PCR 管,加入 30 μL (0.3x) 建库分选磁珠,室温孵育 5 分钟;
- f. 向剩余磁珠中加入 200 µL 当天配置的 80 % 乙醇,等待 30 秒后弃上 清液;
- g. 分别回收步骤 f 和 e 中吸附在磁珠上的 DNA, 回收体积为 20 μL;
- **h**. 取 0.5 μL 样品进行 Qubit 浓度测定;
- i. 取 1 μL 样品进行行安捷伦 2100 HS DNA 质检分析。

人 仪器关机

- 6.1 关闭电脑软件,并关闭电脑;
- 6.2 关闭显微镜开关;
- **6.3** 依次关闭液滴预处理器、制冷模块、高速相机/显微镜、显微镜载物台、注射泵 1-5;
- **6.4** 依次关闭电脑主机、显示器、风扇、HUB、前门控制开关、白灯、黄灯、信号发生器 / 功率放大器开关;
- 6.5 向上推键盘托卡键,并推入键盘托(图 17);

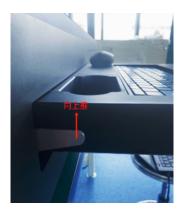


图 17: 键盘托卡键操作

- 6.6 向下拉仪器外部面板把手,关闭外部面板,并关闭右侧卷帘门;
- 6.7 关闭仪器后方总开关。

联系我们 CONTACT US

墨卓生物科技(浙江)有限公司

联系地址: 浙江省嘉兴市桐乡市和顺路455号

邮政编码: 314500

E-mail: contact@mobidrop.com

联系电话: 0573-88067763

上海墨卓生物科技有限公司

联系地址: 中国 (上海) 自由贸易试验区郭守敬路351号

1幢308-312室

邮政编码: 201203

了解更多产品讯息及操作说明,请关注墨卓生物微信公众号

